15.
А1. √52=√(4×13)=2√13
ответ: 1
А2. х²-4х=0
Сумма корней равна коэффициенту перед х умноженному на -1.
ответ: 4
А3. х²-9=0
Произведения корней равно свободному члену.
ответ: 4
А4. х²=16
х1=4
х2=-4
4-(-4)=8
ответ: 1
А5. Третье уравнение это сумма двух неотрицательной величины и положительной величины. Она не может равняться нулю.
ответ: 3
В1. √(25х²у^5)=5ху²√у
В2. Выражение имеет смысл, следовательно а≤0
При внесении отрицательного числа под корень, за корнем остаётся минус
а√(-а)=-√(-а³)
С1. (a+b)×2/|(a+b)|=-2
ответ: -2
Если будут вопросы – обращайтесь :)
1) подкоренное выражение четной степени -должно быть положительно ( в примере корень второй степени)
x^2-6x+8≥0
D=36-32=4
x1=(6+2)/2=4
x2=(6-2)/2=2
так как парабола ветвями вверх (коэффициент пере x^2 положителен)
то методом интервалов
[2][4]
ответ: x=(-∞;2]U[4;+∞)
2)знаменатель дроби не равен 0, поэтому x-1≠0; x≠1
показатель логарифма положителен
(4-x^2)/(x-1)>0
корни когда левая часть обращается в 0 x=-2;2;1-их выкидываем и определяем знак в промежутках между ними
(-2)---(1)(2)
ответ x=(-∞;-2)U(1;2)
3)знаменатель не равен 0, поэтому log21(x+3)≠0; x+3≠21^0
x+3≠1; x≠-2
показатель логарифма положителен, поэтому x+3>0; x>-3
подкоренное выражение ≥0
25-x^2≥0; x^2≤25; x=[-5;5]
учитывая все три условия-получаю
ответ x=(-3;-2)U(-2;5]