Делим пополам диагональ, получается 12 см Смотрим на получившийся прямоугольный треугольник, где гипотенуза = 15, один из катетов = 12. Находим оставшийся катет по Пифагору. 15^2 = 12^2 + x^2 x^2 = 81 x = 9 - это половина второй диагонали ответ: 18 см - вторая диагональ
ДАНО а - сторона первого квадрата. b = a - 3 - ширина прямоугольника S2 = S1 - 6 см² - площадь стала меньше. НАЙТИ а = ? - сторона первого. РЕШЕНИЕ Площадь квадрата по формуле S1 = a², Площадь прямоугольника по формуле S2 = a*b = a*(a - 3) Пишем уравнение a² - (a²-3a) = 6 Раскрываем скобки. a² - a² + 3a = 6 Упрощаем 3*а = 6 Находим неизвестное - а а = 6/3 = 2 - сторона квадрата (длина прямоугольника) Находим неизвестное - b b = a - 3 = - 1 - длина прямоугольника. ВЫВОД. Получили отрицательное значение длины - b и это значит, что в условии всё наоборот и следует читать: ЗАДАЧА. К стороне квадрата ПРИБАВИЛИ 3 см и площадь УВЕЛИЧИЛАСЬ на 6 см. Площадь квадрата - S1 = 2*2 = 4 см², Площадь прямоугольника - S2 = 5*2 = 10 см² Проверка: 10 - 4 = 6 см² - разность - правильно.
Условие: Пусть длина окружности меньшего колеса это х м, Тогда длина окружности большего колеса это (х+1) м Количество оборотов меньшего колеса (y+20) Количество оборотов меньшего колеса y
Решение: Составляем систему уравнений: x(y+20)=175 и (x+1)y=175 xy+20x=175 и xy+y=175 Из первого уравнения вычитаем второе: 20х=y Подставляем полученное значение y во второе уравнение: x*20x+20x=175 20x^2+20x-175=0 x^2+x-8,75=0 D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36 x=2,5 (м) - длина окружности меньшего колеса х+1=2,5+1=3,5 (м) - длина окружности большего колеса
Смотрим на получившийся прямоугольный треугольник, где гипотенуза = 15, один из катетов = 12. Находим оставшийся катет по Пифагору.
15^2 = 12^2 + x^2
x^2 = 81
x = 9 - это половина второй диагонали
ответ: 18 см - вторая диагональ