ответ: [ - √53; -2 ) U ( 2 ; √53 ] .
Объяснение:
y = x² + bx + 1 ; x₂ - x ₁ ≤ 7 ;
На осі Ох у = 0 , x² + bx + 1 = 0 ; D = b² - 4 > 0 ; ( 1) bЄ (- ∞ ; - 2)U( 2 ;+ ∞ ) ;
x ₁= ( - b - √( b² - 4 )/2 ; x₂ = ( - b + √( b² - 4 )/2 ;
x₂ - x ₁= ( - b + √( b² - 4 )/2 - ( - b - √( b² - 4 )/2 = √( b² - 4 ) .
0 < √( b² - 4 ) ≤ 7 ; піднесемо до квадрата :
b² - 4 ≤ 49 ;
b² - 53 ≤ 0 ; bЄ ( - ∞ ; - √53 ] U [ √53 ; + ∞ ) . До цього результату
приєднаємо умову ( 1 ) , одержимо b Є [ - √53; -2 ) U ( 2 ; √53 ] .
Многочлен - алгебраическое выражение, представляющее сумму или разность нескольких одночленов.
Многочлен записан в стандартном виде, если все подобные члены сложены и записаны в стандартном виде.
Записать многочлен 6+10x2yx−6xyx⋅x+3x2y−4 в стандартном виде:
1. записываются члены многочлена в стандартном виде.
6+10x2yx¯¯¯¯¯¯¯¯¯¯¯−6xyx⋅x¯¯¯¯¯¯¯¯¯¯¯+3x2y−4=6+10x3y−6x3y+3x2y−4=
2. Находятся подобные члены.
=6¯¯+10x3y¯¯¯¯¯¯¯¯¯−6x3y¯¯¯¯¯¯¯+3x2y−4¯¯=
3. Вычитаются (cуммируются) подобные члены многочлена 6−4=2 и 10−6=4 .
=2+4x3y+3x2y=
4. Члены многочлена можно упорядочить в порядке убывания степеней:
=4x3y+3x2y+2 .
Степенью многочлена в стандартном виде называется наибольшая из степеней входящих в него одночленов.
Определить степень многочлена 3a4b2−2a3b2+ab2−ab+2 .