Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
y= x^2-7x+10/2x-10. x^2-7x+10=0 Д=49-40=9=3^2 Х1=2, Х2=5 x^2-7x+10/2x-10=(Х-2)(Х-5)/2(Х-5)=Х-2/2 у=x/2-1, кроме одной точки 2x-10=0 (получаем x=5 и y=1,5 Далее, когда 2прямые не имеют общих точек, правильно, когда они параллельны. Для прямой задаваемой формулой y=ax+b будут параллельны все прямые, задаваемые y=ax+c, где b и c любые числа, у тебя y=kx, следовательно, k=1/2 и прямая, соответственно, y=x/2 . Но тебе еще подойдет прямая , которая проходит через точку (0,0) и (5;1,5) ее k=y/x(второй точки) =1,5/5=3/10=0,3. Итог, k может принимать 2 значения k= 0,5 и k=0,3
3x= -pi/4 + pi*n
x= -pi/12 + pi*n/3