М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Amarcy
Amarcy
28.02.2020 12:45 •  Алгебра

Решить два примера.буду . с подробным описанием хода решения,. вычислить неопределенный интеграл: 1. 2.

👇
Ответ:
anuta1244
anuta1244
28.02.2020
Для начала нужно вспомнить что такое дифференциал. Дифференциал от одной переменной, это тоже самое что и производная по этой переменной умноженная на dx.d(f(x))=(f(x))'_xdx 

\int\frac{e^xdx}{\sqrt{2+e^x}}=[d(2+e^x)=e^xdx\rightarrow dx=\frac{d(2+e^x)}{e^x}]=\\=\int\frac{e^x}{\sqrt{2+e^x}}*\frac{d(2+e^x)}{e^x}=\int(2+e^x)}^{-\frac{1}{2}}d(2+e^x})=\\=\frac{(2+e^x)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C=2\sqrt{2+e^x}+C

\int\frac{x+1}{\sqrt{x^2+x+1}}dx=\int\frac{2(x+1)}{2\sqrt{x^2+x+1}}=\frac{1}{2}\int(\frac{2x+1}{\sqrt{x^2+x+1}}+\frac{1}{\sqrt{x^2+x+1}})dx=\\=\frac{1}{2}\int\frac{2x+1}{\sqrt{x^2+x+1}}dx+\frac{1}{2}\int\frac{1}{\sqrt{x^2+x+1}}dx
Посчитаем интегралы отдельно.

\frac{1}{2}\int\frac{2x+1}{\sqrt{x^2+x+1}}=[d(x^2+x+1)=(2x+1)dx\rightarrow dx=\frac{d(x^2+x+1)}{2x+1}]=\\=\frac{1}{2}\int\frac{2x+1}{\sqrt{x^2+x+1}}*\frac{d(x^2+x+1)}{2x+1}=\frac{1}{2}\int (x^2+x+1)^{-\frac{1}{2}}d(x^2+x+1)=\\=\frac{1}{2}*\frac{(x^2+x+1)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C=\sqrt{x^2+x+1}+C

Для этого интеграла вспомним такую формулу:
\int\frac{dx}{\sqrt{x^2+a^2}}=ln|x+\sqrt{x^2+a^2}|+C
Я уже не помню как она выводится, поэтому тут вывести не смогу.
Итак приведём наш интеграл к такому виду.
\frac{1}{2}\int\frac{dx}{\sqrt{x^2+x+1}}=\frac{1}{2}\int\frac{dx}{\sqrt{x^2+x+\frac{1}{4}+\frac{3}{4}}}=\frac{1}{2}\int\frac{dx}{\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}}=\\=[d(x+\frac{1}{2})=dx]=\frac{1}{2}\int\frac{d(x+\frac{1}{2})}{\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}}=\\=\frac{1}{2}*ln|x+\frac{1}{2}+\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}|+C=\\=\frac{1}{2}ln|x+\frac{1}{2}+\sqrt{x^2+x+1}|+C

В итоге получаем интеграл:
...=\frac{1}{2}\int\frac{2x+1}{\sqrt{x^2+x+1}}dx+\frac{1}{2}\int\frac{1}{\sqrt{x^2+x+1}}dx=\\=\sqrt{x^2+x+1}+\frac{1}{2}ln|x+\frac{1}{2}+\sqrt{x^2+x+1}|+C
4,6(57 оценок)
Открыть все ответы
Ответ:
Qmpzaslk
Qmpzaslk
28.02.2020

ответ: Нет.

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней

4,6(75 оценок)
Ответ:
10203040502017
10203040502017
28.02.2020

ответ: Нет.

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.

4,5(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ