На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля. 2 + 1 = 3 кг сплава.
Первая шахта: 60 рабочих; 5 рабочих часов в день; 2 кг алюминия или 3 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 60*5 = 300 часов. 1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля. Для 3 кг сплава требуется 1/3 часа на добычу 1 кг никеля и 1 час на добычу 2 кг алюминия. 1 час + 1/3 часа = часа.
Пропорция часа - 3 кг сплава 300 часов - Х кг сплава кг сплава ------------------------------------------ Вторая шахта: 260 рабочих, 5 рабочих часов в день, 3 кг алюминия или 2 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 260*5 = 1300 часов. 1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля. 1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия. Для 3 кг сплава требуется 1/2 часа для добычи 1 кг никеля и 1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия. 1/2 часа + 2/3 часа = часа.
Пропорция часа - 3 кг сплава 1300 часов - Х кг сплава кг сплава
Обе шахты могут обеспечить завод металлом для получения кг сплава
Дана функция y=x³-3x²+4. 1. Область определения функции: х ∈ (-∞, ∞). 2. Четность, нечетность функции проверяем с соотношений f = f(-x) и f = -f(-x). x^{3} - 3 x^{2} + 4 = - x^{3} - 3 x^{2} + 4. - Нет. x^{3} - 3 x^{2} + 4 = - -1 x^{3} - - 3 x^{2} - 4. - Нет. Значит, функция не является ни чётной, ни нечётной. 3. Координаты точек пересечения графиков функции с осью Ох и осью Оy. График функции пересекает ось X при f = 0 значит надо решить уравнение x³ - 3 x² + 4 = 0. Решаем это уравнение Точки пересечения с осью X: Аналитическое решение даёт 3 действительных корня (из них 2 одинаковых): х = 2 и х = -1. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x³ - 3x² + 4. 0³ - 3*0² + 4. Результат: f(0) = 4. Точка (0, 4). 4. Промежутки возрастания убывания функции, экстремумы функции. Для того, чтобы найти экстремумы, нужно решить уравнение \frac{d}{d x} f{\left (x \right )} = 0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: \frac{d}{d x} f{\left (x \right )} = Первая производная 3 x^{2} - 6 x = 0. Корни этого уравнения x_{1} = 0. x_{2} = 2. Значит, экстремумы в точках: (0, 4) (2, 0)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках x_{2} = 2. Максимумы функции в точках x_{2} = 0. Убывает на промежутках (-oo, 0] U [2, oo) Возрастает на промежутках [0, 2] 5. Промежутки выпуклости функции Найдем точки перегибов, для этого надо решить уравнение \frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: \frac{d^{2}}{d x^{2}} f{\left (x \right )} = Вторая производная 6 \left(x - 1\right) = 0. Корни этого уравнения x_{1} = 1. Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [1, oo). Выпуклая на промежутках (-oo, 1]. 6. асимптоты графика - не имеет. 7. Построение графика - дан в приложении.
2^(x-1)+2^(x+2)=3^(x-1)+3^x
2^(x-1)*(1+2³)=3^(x-1)*(1+3)
9*2^(x-1)=4*3^(x-1) | : 4*3^(x-1)
[9*2^(x-1)]/ [4*3^(x-1)]=1
2^(x-3)/3^(x-3)=1
(2/3)^(x-3)=1
(2/3)^(x-3)=(2/3)⁰
x-3=0, x=3