1.
а)
х²/(х²-у²) * (х-у)/х = х²/(х-у)(х+у) * (х-у)/х = х/(х+у),
б)
а/(3а+3в) : а²/(а²-в²) = а/(3*(а+в)) : а²/(а-в)(а+в) =
= а/(3*(а+в)) * (а-в)(а+в)/а² = (а-в)/3а,
в)
(-2с³/у)⁵ = -32с¹⁵/у⁵
г)
х/у² * 4ху = 4х²/у
2.
( у/(у-х) - (у-х)/у ) * (у-х)/х =
= ( у² - (у-х)²) / (у-х)у ) * (у-х)/х =
= ( у²-у²+2ху-х² ) / (у-х)у ) * (у-х)/х =
= х(2у-х) / (у-х)у ) * (у-х)/х = (2у-х) / у,
3.
(2х-4)/(х²+12х+36) : (8х-16)/(х²-36) =
= 2*(х-2)/(х+6)² : 8*(х-2)/(х-6)(х+6) =
= 2*(х-2)/(х+6)² : (х-6)(х+6)/8*(х-2) =
= (х-6) / 2*(х+6),
при х = 1,5:
(1,5-6) / 2*(1,5+6) = -4,5 / (2*7,5) = -4,5 / 15 = -3/10 (или -0,3)
4.
( а-8 + 32а/(а-8) ) * ( 8+а - 32а/(8+а) ) =
= [ ( (а-8)²+32а )/(а - 8) ] * [ ( (8+а)²-32а)/(8+а) ] =
= (а²-16а+64+32а)/(а-8) * (64+16а+а²-32а)/(8+а) =
= (а²+16а+64)/(а-8) * (а²-16а+64)/(8+а) =
= (а+8)²/(а-8) * (а-8)²/(8+а) =
= (а + 8)(а - 8) = а² - 64
рукописный вариант:
⇅⇅⇅⇅
Арифметический квадратный корень из некоторого числа - это неотрицательное число, квадрат которого равен некоторому числу.
Обозначается: √а. Т.е. √а = b, причем b ≥ 0 и b² = a.
Например, √4 = 2, т.к. 2² = 2 и 2 ≥ 0.
Тогда:
√а = 3, значит, а = 9, т.к. 3² = 9;
√а = 10, значит, а = 100, т.к. 10² = 100;
√а = 0, значит, а = 0, т.к. 0² = 0;
√а = 0,8, значит, а = 0,64, т.к. 0,8² = 0,64;
√а = 1/4, значит, а = 1/16, т.к. (1/4)² = 1/16;
√а = 0,1, значит, а = 0,01, т.к. 0,1² = 0,01;
√а = 1 целая 2/3 = 5/3, значит, а = 25/9 = 2 целых 7/9, т.к. (5/3)² = 25/9;
√а = 1,1, значит, а = 1,21, т.к. 1,1² = 1,21.