1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27
1) 5 подарочных наборов и 5 коробок
как можно разместить?
В первую коробку мы можем положить любой из 5 наборов
во вторую коробку - любой из 4
в третью- любой из 3
в 4ю- любой из 2
и в 5-ю оставшийся набор
всего
2) даны цифры 1,2,3,4,7
нужно составить 4-х значное число- кратное 6
На 6 делятся числа кратные 2 и 3
кратные 2 должны оканчиваться на 2 или 4
кратные трем должны давать в семме цифр числа - число кратное 3
Первый вариант- наше число заканчивается на 2
тогда на оставшиеся 3 места идут 1,3,4,7
но 1+3+4+2 не кратно 3, 1+3+7+2 не кратно 3, 1+4+7+2 не кратно 3 и 3+4+7+2 не кратно 3
Второй вариант- наше число заканчивается на 4
тогда единственная комбинация это число состоящее из цифр 1,3,7, и 4
Количество таких чисел 3*2*1=6
3) Есть 6 маек и 4 наклейки
первую наклейку клеим на любую из 6, вторую на любую из 5, третью- на любую из 4 и последнюю наклейку на любую из 3
тогда всего
1е кореньиз7*кореньиз28=(под корнем(7* 28)=под корнем(7*7*4)=14
2е кореньиз50=подкорнем(25*2)=5(кореньиз2)
кореньиз288=подкорнем(144*2)=12(кореньиз2)
теперь 5√2/12√2=5/12( тк √2 сокращаются)
теперь 14 + 5/12= 14и5/12