Путсь количество учеников равно х, а количество орехов, которые поровну поделили между собой ученики равно у.
Тогда х*у = 120
По условию если бы учеников было на 2 больше, т.е. х+2 то каждый из них получил бы на 2 ореха меньше, т.е. у-2. Всего орехов было 120.
Составляем уравнение:
(x+2)(y-2)=120
Решаем систему уравнений
{х*у = 120
{(x+2)(y-2)=120
x=120/y
(120/y+2)(y-2)=120|*y
(120+2y)(y-2)=120y
120y+2y^2-240-4y=120y
2y^2-4y-240=0
y^2-2y-120=0
D=4-4*1*(-120)=4+480=484
y1=(2+22)/2=24/2=12 (орехов)
y2=(2-22)/2=-20/2=-10<0 не подходит
х=120/y=120/12=10 (учеников)
ответ: Первоначально было 10 учеников
Y'=(3x^4+4x3^+1)'= 12x^3+12x^2Теперь найдем точки при которых производная равна нолю
12x^3+12x^2=012х^2(x+1)=0
откуда получаем два новых уравнения
12х^2=0 и х+1=0
х=0 х=-1
Обе точки попадают в заданный интервал
Теперь находим значенеи функции в найденных точках и на концах отрезка
у(0)=3*0^4+4*0^3+1=0+0+1=1
у(-1)=3*(-1)^4+4*(-1)^3+1=3-4+1=0
у(-2)=3*(-2)^4+4*(-2)^3+1=48-32+1=17
у(1)=3*1^4+4*1^3+1=3+4+1=8
Отсюда видно что наибольшее значение функции на отрезке (-2,1)=у(-2)=17, а наименьшее на этом же отрезке=у(-1)=0
ответ: уmax[-2;1]=y(-2)=17, ymin[-2;1]=y(-1)=0