Множество действительных чисел - это вместе взятые множества рациональных и иррациональных чисел. Действительное число или как его еще называют вещественное число - это любое положительное число, отрицательное число или нуль. Действительные числа разделяются на рациональные и иррациональные. Вещественные (действительные) числа - это своего рода математическая абстракция, служащая для представления физических величин. Такие числа могут быть интуитивно представлены как отношение двух величин одной размерности, или описывающие положение точек на прямой. Множество вещественных чисел обозначается и часто называется вещественной или числовой прямой . Формально вещественные числа состоят из более простых объектов таких, как целые и рациональные числа. Множество действительных чисел обозначается - R
Пусть в стелаже n полок. Задачу будем решать при формул арифметической прогрессии. аn = a1 +(n -1)d Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5 n - полок а1 =21 аn = 21 + (n - 1)*5 - книг на последней полке Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6 (n -1) - полок, т.к. полок на 1 меньше а1 =21 аn = 21 + ((n -1)- 1)*6 - книг на последней полке Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2 5n² + 37n = 6n² + 24n -30 n² - 13n -30 =0 Д = 169 +120 = 289 √Д = 17 n =(13 + 17)/2 = 15 ответ: в стелаже 15 полок.
Действительное число или как его еще называют вещественное число - это любое положительное число, отрицательное число или нуль.
Действительные числа разделяются на
рациональные и иррациональные.
Вещественные (действительные) числа - это своего рода математическая абстракция, служащая для представления физических величин. Такие числа могут быть интуитивно представлены как отношение двух величин одной размерности, или описывающие положение точек на прямой. Множество вещественных чисел обозначается и часто называется вещественной или числовой прямой . Формально вещественные числа состоят из более простых объектов таких, как целые и рациональные числа.
Множество действительных чисел обозначается - R