√(12-x²-x)/√(x+3).
Подкоренное значение в числителе не может быть меньше нуля, поэтому 12-x²-x≥0, или все равно, что х²+х-12≤0, решается методом интервалов. сначала по теореме, обратной теореме Виета, угадываем корни левой части это - 4 и 3, потом раскладываем левую часть на множители, (х-3)(х+4)≤0, дальше разбиваем числовую ось на интервалы и определяем знак на каждом из них, выбирая для проверки любое число из этого интервала. например, для (-4;3) берем нуль. подставляем в неравенство (0-3)(0+4) минус на плюс дает минус. Знак на остальных интервалах так же определяется. результат ниже на рис.
-43 рис.
+ - +
Решением будет [-4;3]; со знаменателем проще. Там надо решить неравенство линейное, а именно х+3>0; x>-3 неравенство строгое, т.к. делить на нуль нельзя. Ведь мы про знаменатель..
Теперь пересекаем эти два решения, т.е. выбираем общее и получаем ответ. (-3;3]
Производная = (2х + 1)е^x + (x² + x - 131)e^x
Решим уравнение
(2х + 1)е^x + (x² + x - 131)e^x= 0
e^x( 2x +1 +x² + x -131) = 0 ( e^x ≠0)
x² +3x -130 = 0
x1 = 10 и x2 = -13
-∞ + -13 - 10 + +∞
Функция убывает на промежутке (-13; 10)
Длина этого промежутка = 23