М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
arinka200000
arinka200000
03.01.2020 00:40 •  Алгебра

Log 0.6(x+2)+log0.6(6-x)=log 0.6(x+8)

👇
Ответ:
ffplfref
ffplfref
03.01.2020
Log 0.6(x+2)+log0.6(6-x)=log 0.6(x+8)
log0.6((x+2)(6-x))=log0.6(x+8)
(x+2)(6-x)=x+8
6x-x²+12-2x=x+8
-x²+3x+4=0
x²-3x-4=0
D=9+16=25(2к)
x1=(3+5)/2=4
x2=(3-5)/2=-1
Проверка:
1)log0.6((4+2)(6-4))=log0.6(4+8)
log0.6(12)=log0.6(12)
x=4 - корень уравнения
2)log0.6((-1+2)(6+1))=log0.6(-1+8)
log0.6(7)=log0.6(7)
x=-1 - корень уравнения
ответ: -1;4
4,4(96 оценок)
Открыть все ответы
Ответ:

ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :

h(t)=-1,1+20t-10t^2

-1,1+20t-10t^2≥ 4    

10t^2 - 20t + 4 + 1,1 ≤ 0

10t^2 - 20t + 5,1 ≤ 0

D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16

t1 = (20+16)/2*10 = 1,8

t2 = (20-16)/2*10 = 0,2

поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени  (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени  (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.            

Объяснение:

4,4(7 оценок)
Ответ:
DanilaButov
DanilaButov
03.01.2020

ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :

h(t)=-1,1+20t-10t^2

-1,1+20t-10t^2≥ 4    

10t^2 - 20t + 4 + 1,1 ≤ 0

10t^2 - 20t + 5,1 ≤ 0

D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16

t1 = (20+16)/2*10 = 1,8

t2 = (20-16)/2*10 = 0,2

поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени  (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени  (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.            

Объяснение:

4,5(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ