ответ:Решение методом подстановки.
1) (-y+5;y), y∈ R
{ x = − y + 5
y = − x + 5
{ x = − y + 5
y = − ( − y + 5 ) + 5
{ x = − y + 5
0 = 0
2) решений нет (прямые параллельны).
{ 2 x + y = 8
10 x + 5 y = 10
{ y = − 2 x + 8
10 x + 5 y = 10
--
{ y = − 2 x+ 8
10 x +
5( − 2x + 8 ) = 10
{ y = − 2 x + 8
30 = 0
3)y=-1/3;x=1 2/3
{ y − x = − 2
y + 2 x = 3
---
{ y = x − 2
y + 2 x = 3
-
{ y = x − 2
( x − 2 ) + 2 x = 3
{ y =x − 2
3 x − 5 = 0
{ y = x − 2
x = 5 /3
{ y = − 1 /3
x = 5 /3
4)y = 4 ; x = − 1.
{ y + x = 3
− y + 2 x + 6 = 0
{ y = − x + 3
−y + 2 x + 6 = 0
{ y = − x + 3
− ( − x + 3 ) + 2 x + 6 = 0
{ y = − x + 3
3 x + 3 = 0
{ y = − x + 3
x = − 1
{ y = 4
x = − 1
ЭТО ВСЁ МЕТОД ПОДСТАНОВКИ!
Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
bn=-314, n=4, b1=-78,5; q=2
Sn=(b1*(qn-1))/(q-1)
S4=(-78,5*(2^2-1))/(2-1)=-235,5
Думаю, правильно