Теория вероятности, задача простенькая, не понимаю, почему у Вас возникают проблемы с её решением. Начнем.
Кидаются 2 игральные кости. 1) произведение должно быть 5
Рассмотрим все варианты, чтобы произведение было равна 5
1) 1*5
2) 5*1
Есть 2 таких варианта. Сколько же всего возможных комбинаций может выпасть? При первом броске может выпасть 1, 2, 3, 4, 5, 6 т.е. 6 вариантов.
При втором столько же вариантов - 6. Следовательно всего может быть 36 вариантов выпадаения игральных костей.
2/36 = (примерно) 0.06. или можно записать как 1/18
Произведение 4
1) 1*4
2) 4*1
3) 2*2
3 таких варианта. 3/36 = (примерно) 0.083 или можно записать как 1/12
Произведение 10
1) 2*5
2) 5*2
2 таких варианта. 2/36= (примерно) 0.06. или можно записать как 1/18
Произведение 12
1) 6*2
2) 2*6
3) 3*4
4) 4*3
4 таких варианта. 4/36 = 0.11 или можно записать как 1/9.
Теория вероятности, задача простенькая, не понимаю, почему у Вас возникают проблемы с её решением. Начнем.
Кидаются 2 игральные кости. 1) произведение должно быть 5
Рассмотрим все варианты, чтобы произведение было равна 5
1) 1*5
2) 5*1
Есть 2 таких варианта. Сколько же всего возможных комбинаций может выпасть? При первом броске может выпасть 1, 2, 3, 4, 5, 6 т.е. 6 вариантов.
При втором столько же вариантов - 6. Следовательно всего может быть 36 вариантов выпадаения игральных костей.
2/36 = (примерно) 0.06. или можно записать как 1/18
Произведение 4
1) 1*4
2) 4*1
3) 2*2
3 таких варианта. 3/36 = (примерно) 0.083 или можно записать как 1/12
Произведение 10
1) 2*5
2) 5*2
2 таких варианта. 2/36= (примерно) 0.06. или можно записать как 1/18
Произведение 12
1) 6*2
2) 2*6
3) 3*4
4) 4*3
4 таких варианта. 4/36 = 0.11 или можно записать как 1/9.
х(х2-36)=0
х=0
х2-36=0
(х-6)(х+6)=0
х-6=0
х=6
х+6=0
х=-6
у3 + 9у(2у+9)=у(у2 +9)(2у+9)