1) на числовой оси постройте точки: А (расстояние a) Б (b) , которые не совпадают. 2) нарисуйте точку А' соответствующую раcстоянию a+b 3) найдите середину отрезка А'Б это и будет ваша точка Х (х=(a+b)/2), 4) |XA|=|OX-OA|=|(a+b)/2-a|=|b-a|/2 |XB|=|OX-OB|=|(a+b)/2-b|=|a-b|/2 вполне очевидно, что |XA|=|XB| |x-a|=|x-b|
проведя рассуждения назад, покажем то, что и требовалось
или прям сразу: |x-a|=|x-b| означает, что х - середина отрезка [a,b], а координаты середины можно найти как среднее арифметическое, х=(а+b)/2.
Дана функция y=f(x) где f(x) = { -x +1, если -4 < x < -1 -x² + 3, если -1 < x < 2 а) f(-4)= -(-4) +1=5 f(-1)= -(-1) +1=2 f(0)= -(0)^2 +3=3
б) график функции в дополнении
в) функция определена на ограниченном интервале функция на данном интервале непрерывна, функция на данном интервале не является ни четной, ни нечетной функция на данном интервале не является монотонной, так как производная меняет знак производная имеет разрыв функция на данном интервале имеет 2 локальных максимума и 2 локальных минимума
Это у=синх, а синх+2, будет тоже самое, только график переместится по оси у не 2 единицы вверх. свойства Область определения функции — множество R всех действительных чисел.
Множество значений функции — отрезок [1; 3], т. е. синус функция — ограниченная.
Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно точко (0,2).
Функция периодическая с наименьшим положительным периодом 2π:
sin(x+2π·k) +2 = sin x + 2, где k ∈ Z для всех х ∈ R. sin x +2 не равна 0 при x любое
sin x+2 > 0 (положительная) для всех x любое sin x +2< 0 (отрицательная) не бывает отрицательной.
Функция возрастает от 1 до 3 на промежутках: Функция убывает от 1 до 3 на промежутках: Наибольшее значение функции sin x+2 = 3 в точках: х= пи/2+2π·k где k ∈ Z Наименьшее значение функции sin x +2 = 1 в точках: х=3пи/2+2π·k где k ∈ Z
2) нарисуйте точку А' соответствующую раcстоянию a+b
3) найдите середину отрезка А'Б это и будет ваша точка Х (х=(a+b)/2),
4) |XA|=|OX-OA|=|(a+b)/2-a|=|b-a|/2
|XB|=|OX-OB|=|(a+b)/2-b|=|a-b|/2
вполне очевидно, что |XA|=|XB|
|x-a|=|x-b|
проведя рассуждения назад, покажем то, что и требовалось
или прям сразу:
|x-a|=|x-b| означает, что х - середина отрезка [a,b], а координаты середины можно найти как среднее арифметическое, х=(а+b)/2.