1.известно, что а > b. сравните: а) 21а и 21b; б) -3,2а и -3,2b; в) а + 8 и b + 8. 2.докажите неравенство: а) (х + 7)в квадрате > х(х + 14); б) (b )в квадрате + 5 10(b - 2). 3.известно, что 3,1
Прилагаю таблицу интегралов. Интеграл суммы(разности) равен сумме(разности) интегралов, т.е.: s (3-sin2x)dx=s (3)dx - s (sin2x)dx=3x + C1 - 1/2*s (sin2x)d2x= 1/2 перед интегралов выносим, чтобы под дифференциалом х умножить на 2, т.е. как бы умножаем и делим на одно и то же число, чтобы ничего не изменилось. Делаем это для того, чтобы переменная интегрирования стала такой же, как и аргумент синуса, чтобы его можно было проинтегрировать. =3х+C1-1/2*(-cos(2x))+C2=3x+C1+1/2*cos2x+C2 С1 и С2 - это константы, которые появляются в неопределенном интеграле, их можно объединить в одну, т.е. С1+С2=С. Тогда получим итоговое выражение: 3х+1/2*cos2x+C
Для начала напишем ОДЗ: х+1≠0 и х+2≠0, значит х≠-1 и х≠-2
данное уравнение может иметь два корня ОДИН корень уравнение имеет в следующих случаях: 1 случай а=-а 2а=0 а=0 2 случай один из корней числителя равен одному из корней знаменателя: х+а=х+1 а=1 3 случай х+а=х+2 а=2 4 случай х-а=х+1 а=-1 5 случай х-а=х+2 а=-2 при всех данных а уравнение имеет 1 корень. Отв:а=0; а=1; а=-1; а=2; а=-2
б)-3,2a<-3,2b , если а<0, b<0
-3,2a>-3,2b , если а>0, b>0
в)a+8>b+8