Представьте многочлен в виде произведения:
Объяснение: (A±B)² =A² ± 2AB+B² ; A²- B² = (A - B)(A+B) .
а) 4a²-4ab + b² — 4 =(2a -b)² - 2² =(2a -b - 2)(2a -b + 2) ;
б) 9-25x²+ 30 ху-9y² =3² - (5x -3y)² = (3 - 5x +3y)(3 + 5x -3y) ;
в) 36x²-25+60xy +25y² =( 6 x+5y)²-(5)² = (6 x+5y -5) (6 x+5y+5) ;
г) 16-24ab-16a²-9b²=(4)²-(4a+3b)²=(4-4a-3b)(4+4a+3b) ;
е) 25a²-20a+4-4b²=(5a -2)²-(2b)² =(5a -2-2b)(5a -2+2b) ;
ж) 16c²-9m²-42m-49=(4c)² - (3m +7)² = (4c -3m -7)(4c +3m +7) ;
з) 70x+25-36y²+49x² = (5 +7x)² -(6y)²=(5 +7x -6y)(5 +7x +6y) ;
!!
д) 9n²- 16m²+40m-25 = (3n)² - (4m - 5)² =(3n - 4m+5)(3n +4m+5)
1) а) F'(x)=3*x^2+8*x-5+0
Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x)
б) F'(x)=3*4*x^3-1/x=12*x^3-1/x
Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x
След. F'(x)=f(x)
б) F(x)=3*e^x
Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C,
т. к. (x^3)'=3x^2
(2x^2)'=2*2x=4x
C'=0
1. f(x)=3x^2+4x
След. , F'(x)=f(x)
2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство
5=3+С
С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2
у=9
x^2=9
х1=-3
х2=3
Границы интегрирования: -3 и 3
Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х
Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54
S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9
Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
Объяснение:
2) { y = 9-4x { y = 9-4* 2.14/25(дробь)
{ 3x + 7 ( 9 - 4x) = -1 { x = 2 целых 14/25
{ y = - 1 целая 16/25
{ x = 2 целых 14/25
4) a) 3a( a-3b)
b) x(x^2 - 25)