М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fluffnastya
fluffnastya
04.11.2021 23:15 •  Алгебра

Городская сквере растут тополяи клены всего 63 дерева сколько тополей и сколько клёнов в этом сквере если известно что пятая часть тополей по количеству деревьев такая же как и половина всех клёнов

👇
Ответ:
stendec
stendec
04.11.2021
Х - тополя
у - клены

{x+y=63
{1/5 x=1/2 y

{x=63-y
{0.2x=0.5y

0.2(63-y)=0.5y
12.6-0.2y-0.5y=0
-0.7y=-12.6
y=18
x=63-18=45

ответ: 45 тополей и 18 кленов.
4,7(47 оценок)
Открыть все ответы
Ответ:
ксюнчик12
ксюнчик12
04.11.2021

Павел Васильев – самый тонкий лирик русской поэзии. Его стихи это яркое, стремительное и счастливое воображение, без которого не бывает большой поэзии. Его музыкальная сила поэтических строк Павла Васильева, затрагивает струны души

В стихах Васильева запечатлено множество состояний и оттенков любовной страсти – от стремительного и лёгкого полёта влюблённости до полнокровной, горячей и в то же время одухотворённой чувственности, есть в них жёсткий, плотский, на грани натурализма, но всегда это чувство сказочно, безоглядно-открыто, искренно . Стихи Васильева затрагивают самые потаенные струны души . Показывая то некое дежавю, читая его стихотворение сосздаеться обучение что все эти строки ты проживаешь сам.

Объяснение:

4,8(76 оценок)
Ответ:
ubdjf
ubdjf
04.11.2021

Перенесем все влево и вынесем за скобки x:

x^3-6x^2-ax=0,\\\\x(x^2-6x-a)=0

Из этого следует, что уравнение всегда имеет хотя бы одно решение - x=0. Задача сводится к тому, чтобы посмотреть, при каких a будут корни у уравнения x^2-6x-a=0 и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.

1) проверим, при каком значении a корнем уравнения x^2-6x-a=0 будет x=0. Подставляем ноль в уравнение: 0-0-a=0\Rightarrow a=0. При a=0 имеем:

x(x^2-6x)=0, \\\\x\cdot x(x-6)=0;\\\\x^2(x-6)=0

Делаем вывод, что при a=0 уравнение имеет два корня: x=0, x=6.

2) при a\neq 0 уравнение x^2-6x-a=0 не может иметь корень x=0. Уравнение - квадратное. Сразу ищем дискриминант: D=(-6)^2-4\cdot1\cdot(-a)=36+4a.

Здесь рассматриваем 3 случая:

2.1. Если D,  то уравнение x^2-6x-a=0 решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.

2.2. Если D=0\Rightarrow 36+4a=0\Rightarrow a=-9, то подставляя вместо параметра -9 в итоге получаем: x^2-6x+9=0, (x-3)^2=0\Rightarrow x=3. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.

2.3. Если D0\Rightarrow 36+4a0\Rightarrow a-9, то уравнение x^2-6x-a=0 имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит a=0, а мы его проверяли отдельно - при a=0 корней будет 2, а не 3, поэтому из неравенства его нужно исключить.

ОТВЕТ: При a уравнение имеет единственный корень; при a=-9 и a=0 уравнение имеет два различных корня; при a\in(-9; 0)\cup(0; +\infty) уравнение имеет три различных корня.

4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ