Примем за x -количество метров ткани в первом куске, за y- количество ткани во втором куске, Можем записать уравнение: (x+y)·140=9100 x-y -количество метров ткани в первом куске после продажи, y-x/2 - количество метров ткани во втором куске после продажи, (x-y) больше y- x/2 на 10 метров: Запишем уравнение: (x-y)-(y-x/2)=10: Записали два уравнения и у нас два неизвестных, решим систему уравнений: (x+y)·140=9100 (x-y)-(y-x/2)=10
x+y=65 x-y-y+x/2=10 ·2
x+y=65 2x-4y+x=20
x+y=65 ·3 3x-4y=20
3x+3y=195 3x-4y=20 вычтем из первого уравнения второе 7y=175 y=25, 25 метров ткани во втором куске. x+y=65, y=65-25=40, 40 метров ткани в первом куске.
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.