x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
Чтобы найти среднюю скорость автомобиля, нужно весь путь, который проехал автомобиль, разделить на всё время, которое он был в пути.
Первые два часа автомобиль ехал со скоростью 70 км/ч. Значит он проехал 70*2=140 (км)
Затем пять часов автомобиль ехал со скоростью 90 км/ч. Значит он проехал 5*90=450 (км)
В конце пути автомобиль один час ехал со скоростью 60 км/ч. Значит он проехал 1*60=60(км)
140+450+60=650 (км) - весь путь, который проехал автомобиль.
2+5+1=8 (часов) - всё время, которое автомобиль был в пути.
Vсред. = 650:8 = 81,25 (км/ч)
ответ: средняя скорость автомобиля на протяжении всего пути 81,25 км/ч.