-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
Чему равна разность арифметической прогрессии (Xn),если X8=58,X15=16 .?
ответ или решение1
Рябова Мария
Дано: Xn – арифметическая прогрессия;
X8 = 58; X15 = 16;
Найти: d - ?
Формула n-го члена арифметической прогрессии:
Xn = X1 + d (n – 1),
где X1 – первый член прогрессии, d – разность прогрессии, n – количество её членов.
Согласно данной формуле, представим восьмой и пятнадцатый члены заданной прогрессии:
X8 = X1 + d (8 – 1) = X1 + 7d;
X15 = X1 + d (15 – 1) = X1 + 14d.
Из полученных уравнений составим систему и решим ее:
X1 + 7d = 58, (1)
X1 + 14d = 16 (2)
Из (1) уравнения выразим X1:
X1 = 58 - 7d,
Полученное выражение подставляем во (2) уравнение системы:
58 - 7d + 14d = 16;
7d = -42;
d = -6.
Закончим решение системы, подставив полученное значение d в выражение:
X1 = 58 – 7 * (-6) = 100.
ответ: d = -6.
Объяснение:
ответ: d=. -6
Пусть х-число экскурсантов
Тогда: 0.75х+4.4 приравняем с 0.8х-4.4, получим:
0.8х-0.75х=8.8
0.15х=8.8
1.5х=88
х=88:1.5=56
Странно!