М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Wkdj13737
Wkdj13737
30.09.2022 07:16 •  Алгебра

Найти решегие уравнения. синус в квадрате х минус 4 синус х косинус х плюс 3 косинус в квадрате х равно 0

👇
Ответ:
Darieva
Darieva
30.09.2022
Sin² x -4Sin x Cos x + 3Cos² x = 0 | :Cos² x ≠ 0
tg² x - 4tg x + 3 = 0
Решаем как квадратное. По т. Виета
tg x = 3                                        tg x = 1
x = arctg 3 + πk, k∈Z                  x = π/4 + πn, n∈Z
4,5(83 оценок)
Открыть все ответы
Ответ:

На протяжении всей истории математики[⇨] представление о и допустимых методах доказательства существенно менялось, в основном, в сторону большей формализации и бо́льших ограничений. Ключевой вехой в вопросе формализации доказательства стало создание математической логики[⇨] в XIX веке и формализация её средствами основных техник доказательства. В XX веке построена теория доказательств — теория, изучающая доказательство как математический объект[⇨]. С появлением во второй половине XX века компьютеров особое значение получило применение методов математического доказательства для проверки и синтеза программ[⇨], и даже было установлено структурное соответствие между компьютерными программами и математическими доказательствами (соответствие Карри — Ховарда[⇨]), на основе которого созданы средства автоматического доказательства[⇨].

Объяснение:

Основные приёмы, используемые при построении доказательств: прямое доказательство[⇨], математическая индукция и её обобщения[⇨], доказательство от противного[⇨], контрапозиция[⇨], построение[⇨], перебор[⇨], установление биекции[⇨], двойной счёт[⇨]; в приложениях в качестве математических доказательств привлекаются также методы, не дающие формального доказательства, но обеспечивающие практическую применимость результата[⇨] — вероятностные, статистические, приближённые. В зависимости от раздела математики, используемого формализма или математической школы не все методы могут приниматься безоговорочно, в частности, конструктивное доказательство[⇨] предполагает серьёзные ограничения.

4,6(74 оценок)
Ответ:
Юра754
Юра754
30.09.2022

Объяснение:

1) 0,5·sin2x = sin35° ⇔ sin2x = 2·sin35°  (1) ;  так как y = sinx

 возрастает в  первой четверти , то sin35° > sin30° = 0,5  ⇒

2·sin35° > 1 ⇒  уравнение (1) не имеет решений

2) arcsin 2x = arccos x (2) ,  arccos x ≥ 0 для всех х ⇒ arcsin 2x ≥ 0

⇒ х ≥ 0  ; так как из области определения у = arcsin2x  следует

, что х ≤ 0,5 , то уравнение (2) имеет решение только ,    

  если x ∈ [ 0 ; 0,5]  , на этом  отрезке левая часть уравнения

меняется от 0 до π/2 ,  а правая  от π/3  до π/2  ⇒    

уравнение ( 2) имеет решение , если множество

значений обеих частей не выходит за пределы [π/3 ; π/2]   , но

на этом отрезке функция y = sinx - возрастает ⇒ уравнение ( 1 )

равносильно на [ 0 ; 0,5]  следующему :  

 sin(arcsin2x) = sin(arccosx)

2x = \sqrt{1-x^{2} }  ⇔ 4x² = 1 - x² ⇔ x² = 1/5 ⇒  

x = \frac{\sqrt{5} }{5}    ( так как х ≥ 0)

функции , стоящие в левой и правой частях уравнения имеют

разную монотонность , поэтому сразу ясно , что уравнение  

имеет не более одного корня , в этом случае его достаточно

"  угадать "  , но угадать не получилось , пришлось брать

синусы  от обеих частей

f(x) = g(x) ⇔ h(f(x)) = h(g(x) ) , если h(x) -  монотонна и значения

f и g  входят в область определения функции h  , поэтому

и пришлось доказывать , что значения  f   и g  не выходят

за пределы первой четверти , а там  синус возрастает и

поэтому законно брать синусы от обеих частей

4,5(10 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ