М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dizelshop
Dizelshop
03.11.2020 12:53 •  Алгебра

Вычислить: (125: 512) всё в минус одной третьей степени? заранее )

👇
Ответ:
MikassaSwag
MikassaSwag
03.11.2020

 (125:512)^(-1/3)=(512)^1/3 : (125)^1/3=8/5=1  3/5

4,5(1 оценок)
Открыть все ответы
Ответ:
LightDarkness
LightDarkness
03.11.2020
А) x^3 + x^2 + x + 2 - на множители не раскладывается.
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)

б) 4x - 4y + xy - y^2 =  4(x - y) + y(x - y) = (4 + y)(x - y)
4,7(6 оценок)
Ответ:
раовт
раовт
03.11.2020

ответ:x[-5 ; -\sqrt{3}][\sqrt{3};5]

Объяснение:

Область определения или область задания функции — множество, на котором задаётся функция. В каждой точке этого множества значение функции должно быть определено.

Для y=arcsinx   x[-1 ; 1]

Для y=arccosx   x[-1 ; 1]

Решаем систему:

\left \{ {{-1\leq \frac{3}{x^2} \leq 1} \atop {-1\leq \frac{x}{5}\leq 1}} \right.\\\\\\

Четыре уравнения.

1) \frac{3}{x^2}\geq -1  ⇒  \frac{3}{x^2} + 1\geq 0

Выполняется для любых x.

2) \frac{3}{x^2}\leq 1\frac{3}{x^2} - 1 \leq 0  ⇒

\frac{3-x^2}{x^2}\leq 0

Дробь может быть меньше либо равно нулю тогда и только тогда, когда ее числитель неотрицателен, а знаменатель отрицателен, либо когда ее числитель отрицателен или равен нулю, а знаменатель положителен, т.е. в первом случае:

\left \{ {{3-x^2\geq 0} \atop {x^2

x∈∅ (ни один x не удовлетворяет данному условию, так как x^2 всегда положителен)

Во втором случае:

\left \{ {{3-x^2\leq 0} \atop {x^20}}\right.\left \{ {{x^2\geq 3} \atop {x^20}}\right. ⇒ решением этого случая будет являться:

x(-\infty;-\sqrt{3}] ∪  [\sqrt{3};+\infty)

3)  \frac{x}{5}\leq 1\frac{x-5}{5}\leq 0x-5\leq 0  ⇒ x\leq 5

4) Аналогично третьему уравнению находим:

x\geq -5

Находим пересечение всех полученных промежутков:

1) ∀x

2) x(-\infty;-\sqrt{3}] ∪  [\sqrt{3};+\infty)

3) x\leq 5

4) x\geq -5

ответ: x[-5 ; -\sqrt{3}][\sqrt{3};5]

4,5(12 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ