1) x (-бесконечность;-6)V(-6;+бесконечность)
2) все числа
3) x (-бесконечность; -5)V(-5;+5)V(+5;+бесконечность)
4) x (-бесконечность; -5)V(-5;+5)V(+5;+бесконечность)
5) по идее не решается
Объяснение:
1) Нельзя, чтобы знаменатель делился на ноль, мы пишем: х+6>0 и переносим, меняя знак, тогда х>-6
2) подойдут любые числа
3) то же самое, что и в первом: x^2-25>0 x^2>25, корень 25 это пять, но т.к. квадрат, то + и -5.
4) аналогично третьему
5) не решается потому, что x^2+1>0 x^2>-1, корень из -1 не может быть, т.к. под корнем никогда не должно быть минуса
Предлагаю для начала решить уравнение:
(3x² + 2x - 1)/(x + 1) = 5
ОДЗ: x + 1 ≠ 0
x ≠ -1
(3x² + 2x - 1)/(x + 1) * (x + 1) = 5 * (x + 1)
3x² + 2x - 1 = 5 * (x + 1)
3x² + 2x - 1 = 5x + 5
3x² + 2x - 5x - 1 - 5 = 0
3x² - 3x - 6 = 0
D = (-3)² - 4 * 3 * (-6) = 9 + 72 = 81
x₁,₂ = (3 ± √81)/(2 * 3) = (3 ± 9)/6
x₁ = (3 + 9)/6 = 12/6 = 2
x₂ = (3-9)/6 = -6/6 = -1 (посторонний корень, не соответствует ОДЗ).
ОТВЕТ: x = 2.
Отвечаю на Ваш вопрос.
В дробно-рациональных уравнениях (подобных данному) нужно избавляться от знаменателя. Он никуда автоматически не пропадает. Просто все уравнение имеют такую особенность, что если умножить обе чести уравнения на одно и то же число (или выражение), то корни уравнения остаются прежними. В таком случае чтобы "исчез" знаменатель (то есть чтобы от него избавиться) обе части уравнения умножают на общий знаменатель (вторая строчка решения, не учитывая ОДЗ).
х² + 2х -3 = 0
Корни квадратного уравнения : х=1 или х= -3
Выполним проверку корней, подставим найденные значения в исходное уравнение. х=1, log₂(1² + 2*1 +3) =log₂6
log₂6 = log₂6 - верно
x=-3, log₂( (-3)²+2*(-3) +3) = log₂6
log₂6=log₂6 - верно
ответ: -3;1.