Варифметической прогрессии девятый член больше 4 члена на 10 и больше 3 члена в 5 раз найдите сумму всех членов этой прогрессии начиная с 200 члена и заканчивая 300
Арифметическая прогрессия это последовательность вида a1, a2=a1+d, a3=a2+d, ........,an=an-1+d. Чтобы задать прогрессию, нужно определить ее первый член a1 и разность d. Все остальные члены последовательности можно вычислить, зная две эти величины. В частности n-й член последовательности выражается так:
Тогда 3-й (2)
4-й (3)
9-й (4)
Согласно первому условию: (5)
Согласно 2-му условию: (6) Подставляем в (5) и (6) выражения для из (2), (3), (4). получим систему линейных уравнений с двумя неизвестными a1 и d.
(7) (8)
Из (7) сразу получим d ⇒ (9) Из (8) и (9) выразим a1: Есть. Теперь Сумма. Сумма n членов арифметической прогрессии, начиная с 1-го, определяется по формуле (12) Сумма членов, начиная с 200-го номера по 300-й включительно будет определяться выражением: =
Треугольник ba1c1 - равносторонний, все углы в нем 60 градусов. Это все решение (причем самое полное и точное из всех). Но можно не останавливаться на достигнутом, и соединить вершины этого треугольника с вершиной куба d. Получается пирамида, у которой все грани - равносторонние треугольники. То есть получился тетраэдр (или, если хотите, правильный тераэдр, хотя это уточнение и лишнее - тетраэдром называют именно правильную треугольную пирамиду с равными ребрами), вписаный в куб. Конечно же, можно и наоборот - для любого тетраэдра можно построить такой куб, что ребра тетраэдра будут диагоналями граней куба.Следствия.Во первых, скрещивающиеся ребра тетраэдра взаимно перпендикулярны (в данном случае, к примеру, bd перпендикулярно a1c1, поскольку a1c1 II ac, а ac и bd - диагонали квадрата abcd, точно также доказывается перпендикулярность остальных пар скрещивающихся ребер тетраэдра).Во вторых, отрезок, соединяющий середины скрещивающихся ребер тетраэдра, перпендикулярен этим ребрам и равен длине ребра тетраэдра, умноженной на √2/2. В самом деле, это отрезок, соединяющий центры противоположных граней куба, то есть он равен стороне куба, а ребро тетраэдра равно диагонали грани куба, откуда и получатеся соотношение длин.Конечно, к задаче это имеет косвенное отношение (точнее, не имеет ни какого), но уж больно неприятно выдавать решение, занимающее полстрочки.
a1, a2=a1+d, a3=a2+d, ........,an=an-1+d.
Чтобы задать прогрессию, нужно определить ее первый член a1 и разность d. Все остальные члены последовательности можно вычислить, зная две эти величины. В частности n-й член последовательности выражается так:
Тогда 3-й
4-й
9-й
Согласно первому условию:
Согласно 2-му условию:
Подставляем в (5) и (6) выражения для
Из (7) сразу получим d
Из (8) и (9) выразим a1:
Есть. Теперь Сумма.
Сумма n членов арифметической прогрессии, начиная с 1-го, определяется по формуле
Сумма членов, начиная с 200-го номера по 300-й включительно будет определяться выражением: