Паша забыл pin-код на своей sim-карте. сколькими он может его подобрать, если он помнит, что какие-то две одинаковые цифры стояли рядом и больше не повторялись. pin-код – четыре цифры.
Рассмотрим случай, когда первая и вторая цифры PIN-кода повторяются. тогда первой цифрой может быть одна из десяти цифр, второй - одна цифра, третьей - одна из девяти оставшихся цифр, четвертой - одна из восьми оставшихся. то есть количество ввода PIN-кода с двумя одинаковыми цифрами в начале равно 10*1*9*8=720. но таким же образом одинаковые цифры могут стоять на 2 и 3 и на 3 и 4 местах, т.е. общее количество ввода PIN-кода с двумя одинаковыми цифрами, стоящими рядом, равно 3*720=2160. но это еще не все - мы посчитали без учета того, что могут по два раза попасться одинаковые цифры (например, 1122 и т.д.), т.е. еще плюсуем т.е. в итоге но и это еще не все - мы посчитали без учета одинаковых цифр на крайних позициях, отличных от одинаковых цифр на 2 и 3 местах (т.е. например мы не посчитали комбинацию 1221), т.е. еще плюсуем в конечном итоге получаем
По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90