Касательная к графику функции параллельна оси ОХ, ⇒ k=0
геометрический смысл производной состоит в том, что производная функции вычисленная в точке касания =tg угла наклона касательной или угловому коэффициенту касательной y'=((x-4)'* e^x)'=(x-4)' *e^x+(e^x)' *(x-4)=e^x+e^x*(x-4) y'=0 (k=0), e^x+e^x*(x-4)=0, e^x*(1+x-4)=0 e^x*(x-3)=0 e^x≠0, x-3=0, x=3 следовательно, задание: написать уравнение касательной к графику функции у=e^x*(x-4) в точке х₀=3 решение. 1. у=у(х₀)+y'(x₀)*(x-x₀) 2. y(x₀)=y(3)=e³ *(3-4)=-e³ 3. y'=e^x*(x-3) 4. y'(x₀)=y'(3)=0 5. y=-e³+0*(x-3) y=-e³ уравнение касательной
Рассмотрим два крайних случая, чтобы доказать, что количество ребят не зависит от распределения 16 юношей по двум классам. 1) Пусть все 16 юношей в классе А, а в классе Б юношей нет. Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0. Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16. Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
геометрический смысл производной состоит в том, что производная функции вычисленная в точке касания =tg угла наклона касательной или угловому коэффициенту касательной
y'=((x-4)'* e^x)'=(x-4)' *e^x+(e^x)' *(x-4)=e^x+e^x*(x-4)
y'=0 (k=0),
e^x+e^x*(x-4)=0, e^x*(1+x-4)=0
e^x*(x-3)=0
e^x≠0, x-3=0, x=3
следовательно, задание:
написать уравнение касательной к графику функции у=e^x*(x-4) в точке х₀=3
решение.
1. у=у(х₀)+y'(x₀)*(x-x₀)
2. y(x₀)=y(3)=e³ *(3-4)=-e³
3. y'=e^x*(x-3)
4. y'(x₀)=y'(3)=0
5. y=-e³+0*(x-3)
y=-e³ уравнение касательной
график во вложении