данo:
<A=35°
<C=70°
AC=27cm
Рассчитываем <B:
<B=180°-(<A+<C)=180°-(35°+70°)=180°-105°=75°
<B=75°
Sin75°=0,9659
Sin70°=0,9397
Sin35°=0,5736
пользуемся формулой синусов:
*AC/sinB=CB/sina=AB=sinC
AC/sin75°=CB/sin 35° to:
27/sin75°=CB/sin35° // *sin35°
CB=27*sin35° /sin75°
CB=27*0,5736 /0,9659=15,4872 / 0,9659=16,0339
CB=16,0330cm
AC/sin75°=AB/sin70° to:
27/sin75°=AB/sin70° // *sin70°
AB=27*sin70°/sin75°
AB=27*0,9397 /0,9659 =25,3719 / 0,9659=26,2676
AB=26,2676cm
St =1/2*AC*AB*sina
St= ½*27*26,2676*0,5736=203,4058cm2
чтобы решить это уравнения надо построить в одной координатной плоскости графики функций y=sqrt(x) и y=6-x , абсцисса точки пересечения этих графиков и будет корнем этого уравнения
1) y=sqrt(x) - график этого уравнения - лежачая полупарабола, определенная только при значении x>=0
находим некоторые точки:
x=0; y=0; (0;0)
x=1; y=1; (1;1)
x=4; y=2; (4;2)
2) y=6-x - линейная функция, график - прямая линия
находим некоторые точки:
x=0; y=6 (0;6)
x=6; y=0; (6;0)
график в приложении:
красным цветом - график y=sqrt(x)
синим цветом - график y=6-x
эти функции пересекаются в точке (4;2)
откуда x=4
ответ: x=4
Объяснение:
Раскрываz модуль имеем систему уравнений:
x(4-x)=2 x²-4x+2=0 D=8 x₁=2+√2 x₂=2-√2
-x(4-(-x)=2 x²+4x+2=0 D=8 x₃=-2+√2 x₄=-2-√2.