Пусть х столов с двумя ящиками и
у столов с тремя ящиками, тогда
(х+у) столов с одним ящиком
По условию всего 14 столов, получаем первое уравнение:
х+у+(х+у) = 14
По условию всего 25 ящиков, получаем второе уравнение:
1·(х+у) + 2·х + 3у = 25
Решаем систему:
{х+у+(х+у) = 14
{1·(х+у) + 2·х + 3у = 25
{2х+2у = 14
{х+у + 2х + 3у = 25
{2х+2у = 14
{3х+4у = 25
{x+y = 7
{3x+4y = 25
Из первого уравнения выразим х через у:
x=7-y
Подставим во второе и найдем у.
3·(7-y)+4y = 25
21-3y+4y = 25
y=25-21
y = 4 стола с тремя ящиками.
ответ: 4.
Задание № 1:
Найдите последнюю ненулевую цифру значения произведения 40^50*50^40?
10^130 нас не интересует. Попробуем повозводить 2 в степень:
2^1=2, 2^2=4, 2^3=8, 2^4=16, 2^5=32
Пятая степень, как и первая, оканчивается на 2. Образуется своего рода цикл.
Чтобы узнать последнюю цифру степени N, нужно N разделить на 4. Остаток от деления соответствует степени, последняя цифра которой совпадает с последней цифрой степени N. Остаток 0 соответствует 4-ой степени.
60/4=15, остаток 0 – 4 степень оканчивается на 6, значит и 60 степень оканчивается на 6
ОТВЕТ: 6
у кг - 2 сплав, в котором 3у/10 кг золота и 7у/10 кг серебра.
8 кг - новый сплав, в котором 5*8/16=2,5 кг золота и 11*8/16=5,5 кг серебра.
Получается система уравнений:
х+у=8
2х/5+3у/10=2,5 или 4х+3у=25
3х/5+7у/10=5,5 или 6х+7у=55
х=8-у
4(8-у)+3у=25
у=7 кг 2 сплав
х=1 кг 1 сплав
ответ: 1 кг и 7 кг