task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.
Даны уравнения сторон треугольника
:
1. 3x-2y-1=0
2. 5x+4y-31=0
3. x-8y-15=0
С системы можно определить координаты вершин треугольника, затем определить длины сторон и по теореме косинусов определить углы.
Но можно сразу определить углы между сторонами по угловым коэффициентам прямых, включающих стороны треугольника.
Для этого выразим уравнения относительно у:
1. 3x-2y-1=0 у = (3/2)х - (1/2) к1 = 3/2.
2. 5x+4y-31=0 у = (-5/4)х + (31/4) к2 = -5/4.
3. x-8y-15=0 у = (1/8)х - (15/8) к3 = 1/8.
Угол 1-2 равен arc tg|((3/2)-(-5/4))/(1+(3/2)*(-5/4))| = arc tg(22/7) = 72,349876°.
Угол 2-3 равен arc tg|((-5/4)-(1/8))/(1+(-5/4)*(1/8))| = arc tg(44/27) = 58,465208°.
Угол 1-3 равен arc tg|((3/2)-(1/8))/(1+(3/2)*(1/8))| = arc tg(22/19) = 49,184916°.