Пусть вся работа будет одно целое обозначим за единицу, т.е. 1 Пусть первый рабочий работает х дней, тогда второй (х+10) дней Тогда первый будет работать с производительностью 1/х Второй будет работать с производительностью 1/(х+10) А их общая производительность 1/12 (скорость выполнения работы) Составим уравнение 1/х + 1/(х+10) = 1/12 Приведём к общему знаменателю (х+10+х)/(х(х+10)) = 1/12 12(2Х+10)=х(х+100 24х+120-х^2-10х=0 -х^2+14х+120=0 Д=676 х1=20 х2=-6 не является решением ответ первый выполняет работу за 20 дней, второй за 30
Допустим, что мотоциклист ехал в город x часов, а велосипедист - y часов. тогда можно составить систему уравнений: (немного о втором выражении: так как и мотоциклист и велосипедист ехали одновременно, то если мы вычтем из всего пути ту часть пути, которую уже проехал мотоциклист к тому моменту, как они встретились, то получим ту часть пути, которую проехал велосипедист. а выражаем мы эту часть через время, а именно ищем отношение 1 часа ко всему времени.) теперь осталось решить эту систему уравнений. во втором уравнении вместо y подставляем x + 2 и получаем уравнение с одной неизвестной (х), а затем решаем его:чтобы эта дробь была равна нулю, надо, чтобы числитель был равен нулю, то есть: 3x(x + 2) - 4(x + 2) - 4x = 0 3х² + 6х - 4х - 8 - 4х = 0 3х² - 2х - 8 = 0d = 2² + 4 * 8 * 3 = 4 + 96 = 100 √d = 10 нам нужен только положительный корень, так как время не может быть отрицательным.x = 2 (ч.) - ехал мотоциклист, а велесипедист тогда ехал y = x + 2 = 2 + 2 = 4 (ч.) ответ: 4 часа.