Эту задачу можно решить с системы уравнения: Пусть х будет ЧАСЫ, за которые первый печник сделает работу отдельно Пусть у будет ЧАСЫ, за которые второй печник сделает работу отдельно Теперь узнаем сколько оба печника сделают работу за 1 час: Получаем: 1/х- сделает первый печник за 1 час 1/у- сделает второй печник за 1 час Тогда нужно решить эту систему из 2-х уравнений Получаем: 1/Х+1/У =1/12 и 2/Х +3/У = 1/5 (20%- 1/5 задания) Каждое слагаемое 1-ого уравнения мы умнажаем на 2 и вычтем его из 2-ого уравнения. Из этого мы получаем: 1/У =1/5 - 1/6 = 1/30, тогда У=30; следовательно 1/Х =1/12 -1/30 = 3/60 =1/20 тогда Х=20 ответ: Первый печник будет работать 20 часов; а второй будет работать 30 часов
Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.
График линейной функции y = kx + b – это прямая.
k - угловой коэффициент прямой,
По знаку коэффициента k можно определить угол наклона прямой к положительному направлению оси ОХ:
если K>0 то угол острый, функция возрастает
если K<0 то угол тупой, функция убывает
коэффициент b определяет сдвиг вверх или вниз
b - расстояние от начала координат до точки пересечения прямой с осью y
если b<0 - сдвиг вниз
если b>0 - сдвиг вверх