Объяснение:
Сразу отметим что число 1997 простое.
x²-y²=1997
(x-y)(x+y)=1997
Т.к. число простое, а x и y целые, то произведение этого числа можно получить только следующими
(x-y=1 (2x=1998 (x=999
(x+y=1997 ⇒ (y=x-1 ⇒ (y=998
(x-y=-1 (2x=-1998 (x=-999
(x+y=-1997 ⇒ (y=x+1 ⇒ (y=-998
(x-y=1997 (2x=1998 (x=999
(x+y=1 ⇒ (y=1-x ⇒ (y=-998
(x-y=-1997 (2x=-1998 (x=-999
(x+y=-1 ⇒ (y=-1-x ⇒ (y=998
Все решения: (999;998),(-999;-998),(999;-998),(-999;998)
(
(
Знак системы
Поиск...
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Onyend
2 недели назад
Алгебра
5 - 9 классы
ответ дан • проверенный экспертом
1. Дана функция: у = х2 - 4х - 5
a) запишите координаты вершины параболы;
b) запишите ось симметрии параболы;
c) найдите точки пересечения графика с осями координат;
d) постройте график функции.
e) найдите промежутки убывания и возрастания функции;
2. Дана функция. у = -3х2 - 5х - 2.
а) Найдите значения функции f (2), f (−1) .
b) Известно, что график функции проходит через точку ( k ; 0). Найдите значение k.
3. Дана функция у = 2х2− 8x + 7.
Не строя графика, найдите:
а) область определения функции.
b) наименьшее значение функции.
1
СМОТРЕТЬ ОТВЕТ
Zombynella avatar
Ещё нужно решение?
romaahromov7 avatar
да решение очень нужно
oleg23goon avatar
на 1: определите, в каких четвертях находится график функции;
Zombynella avatar
График функции находится во ВСЕХ четырёх четвертях)
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,9/5
45
Zombynella
главный мозг
4.6 тыс. ответов
7.1 млн пользователей, получивших
В решении.
Объяснение:
1. Дана функция: у = х² - 4х - 5 ;
a) запишите координаты вершины параболы;
Формула: х₀ = -b/2a
x₀ = 4/2 = 2;
y₀ = 2² - 4*2 - 5 = 4 - 8 - 5 = -9.
Координаты вершины параболы (2; -9).
b) запишите ось симметрии параболы;
x = 2;
c) найдите точки пересечения графика с осями координат;
1) при пересечении графиком оси Оу х равен нулю:
у = х² - 4х - 5 ; х = 0
у = 0² -4*0 - 5 = -5;
Координаты пересечения графиком оси Оу (0; -5);
2) при пересечении графиком оси Ох у равен нулю:
у = х² - 4х - 5 ; у = 0
х² - 4х - 5 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =16 + 20 = 36 √D= 6
х₁=(-b-√D)/2a
х₁=(4-6)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(4+6)/2
х₂=10/2
х₂=5.
Координаты пересечения параболой оси Ох (-1; 0); (5; 0).
d) постройте график функции.
График - парабола со смещённым центром, ветви направлены вверх.
Таблица
х -3 -2 -1 0 1 2 3 4 5 6 7
у 16 7 0 -5 -8 -9 -8 -5 0 7 16
График прилагается.
e) найдите промежутки убывания и возрастания функции;
Функция возрастает при х∈(2; +∞);
Функция убывает при х∈(-∞; 2).
2. Дана функция у = -3х² - 5х - 2.
а) Найдите значения функции f(2), f(−1).
Подставить в уравнение значение х и вычислить значение у:
1) у = -3х² - 5х - 2 х=2
у = -3 * 2² - 5*2 - 2 = -12 -10 - 2 = -24;
f(2) = -24.
2) у = -3х² - 5х - 2 х= -1
у = -3 * (-1)² - 5*(-1) - 2 = -3 + 5 - 2 = 0
f(−1) = 0.
b) Известно, что график функции проходит через точку ( k ; 0). Найдите значение k.
у = -3х² - 5х - 2 х=k у=0
-3k² - 5k - 2 = 0/-1
3k² + 5k + 2 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =25 - 24 = 1 √D= 1
k₁=(-b-√D)/2a
k₁=(-5-1)/6
k₁= -6/6
k₁= -1;
k₂=(-b+√D)/2a
k₂=(-5+1)/6
k₂= -4/6
k₂= -2/3.
3. Дана функция у = 2х² − 8x + 7.
Не строя графика, найдите:
а) область определения функции.
1) Область определения функции - это значения х, при которых функция существует.
Так как график квадратичной функции парабола, область её определения ничем не ограничен.
Область определения функции D(y) = х∈R, множество всех действительных чисел, или D(y) = х∈(-∞; +∞).
b) наименьшее значение функции.
Наименьшее и наибольшее значение функции определяется ординатой вершины параболы в зависимости от направления её ветвей.
В данном примере ветви параболы направлены вверх, значит, наименьшим значением функции будет ордината вершины (у₀).
у = 2х² − 8x + 7
Сначала найти х₀:
х₀ = -b/2a
х₀ = 8/4 = 2;
у₀ = 2 * 2² - 8*2 + 7 = 8 - 16 + 7 = -1.
у наим. = -1.
A)
Точки в которых подмодульные выражения обращаются в 0:
х=-6 х=7 и х=-11 отмечаем на числовой прямой
(-11)(-6)(7)
получаем 4 промежутка.
На каждом из четырех промежутков раскрываем модули
1) на (-∞;-11]
|x+6|=-x-6
|x-7|=-x+7
|x+11|=-x-11
Уравнение принимает вид
-х-6-х+7-х-11=25
-3х=35
х=-35/3=-11целых 2/3 - входит в интервал (-∞;-11]
и поэтому является корнем уравнения
2) на (-11;-6]
|x+6|=-x-6
|x-7|=-x+7
|x+11|=x+11
Уравнение принимает вид
-х-6-х+7+х+11=25
-x=13
x=-13
-13∉ (-11;-6]
x=-13 не является корнем уравнения
3) (-6;7]
|x+6|=x+6
|x-7|=-x+7
|x+11|=x+11
Уравнение принимает вид
х+6-х+7+х+11=25
x=1
1∈(-6;7]
x=1 является корнем уравнения
4) (7;+∞)
|x+6|=x+6
|x-7|=x-7
|x+11|=x+11
Уравнение принимает вид
х+6+х-7+х+11=25
3х=15
х=5
5∉(7;+∞)
х=5 не является корнем уравнения
ответ.х=-11 целых 2/3; х=1
Б)
|х+4|+|х-9|+|х+8|+|х-5|=17
(-8)(-4)(5)(9)
1)на (-∞;-8]
-x-4-x+9-x-8-x+5=17
-4x=15
x=-15/4
х=-3целых 3/4 ∉(-∞;-8] - корнем не является
2)на (-8;-4]
-x-4-x+9+x+8-x+5=17
-2x=-1
x=0,5∉ (-8;-4]- корнем не является
3)на (-4;5]
x+4-x+9+x+8-x+5=17
0x=-9
уравнение не имеет корней
4)на (5; 9]
x+4-x+9+x+8+x-5=17
2x=1
x=0,5∉ (5;9]- корнем не является
5)на (9;+∞)
x+4+x-9+x+8+x-5=17
4x=19
x=4,75∉ (9;+∞) - корнем не является
ответ. Уравнение не имеет корней
В)
|3t-6|+|4t+12|+|2t-18|-|5t+10|=37
t=2 t=-3 t=9 t=-2
(-3)(-2)(2)(9)
1) на (-∞;-3]
-3t+6-4t-12-2t+18+5t+10=37
-4t=15
t=-3,75 ∈(-∞;-3] и является корнем данного уравнения
2)на (-3;-2]
-3t+6+4t+12-2t+18+5t+10=37
4t=-9
t=-2,25∈(-3;-2] - является корнем данного уравнения
3)на (-2;2]
-3t+6+4t+12-2t+18-5t-10=37
-6t=11
t=-1 целая 5/6∈(-2;2] и является корнем данного уравнения
4)на (2;9]
3t-6+4t+12-2t+18-5t-10=37
0t=23
уравнение не имеет корней
5)на (9;+∞)
3t-6+4t+12+2t-18-5t-10=37
4t=59
t=59/4
t=14,75∈(9;+∞) и является корнем данного уравнения
ответ. х= -3,75; х= -2,25; х= - 1 целая 5/6; х= 14,75