при а>0 ветви параболы идут вверх при а<0 ветви параболы идут вниз прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль для этого решаем уравнение ах²+bx+c=0 для начала находим дискриминант D=b²-4ac если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х² которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0 если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в y(x)=ах²+bx+c, нетрудно увидеть, что при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы затем посчитаем y*=y(x*), подставив х* в наше уравнение параболы у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
Логарифмом в данном случае является степень, в которую надо возвести 0,3, чтобы получить 0.35.
Мы также знаем, что при возведении в степень дробных чисел от 0 до 1, как в нашем случае, число уменьшается, так как произведение дробной части числа на само себя всегда его уменьшает. Верно и наоборот, что дробное число в степени увеличивается, если степень также лежит в промежутке от 0 до 1.
Соответственно в вашем случае данный логарифм будет принадлежать числовому промежутку от (0 до 1), а точнее равен 0.87, если проверить наше предположение на калькуляторе. Вывод:
х+y ==6,4*10^4+1,6*10^3 =10^3(6.4*10+1.6)=10^3*65.6=65600
x-y=6,4*10^4-1,6*10^3 =10^3(6.4*10-1.6)=10^3*62.4=62400
x*y=6,4*10^4*1,6*10^3 =10.24*10^7
х:y=6,4*10^4/1,6*10^3=4*10=40