ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
1) переписываем уравнение в виде x''+k*x=0. Это однородное ЛДУ 2-го порядка с постоянными коэффициентами, для его решения составляем характеристическое уравнение r²+k=0. Так как по условию k- натуральное число, то r²=-k<0. Отсюда r1=i*√k, r2=-i*√k, где i=√-1. Тогда данное уравнение имеет общее решение x(x)=A*cos(x*√k)+B*sin(x*√k). ответ: x(x)=A*cos(x*√k)+B*sin(x*√k).
2) записываем уравнение в виде q''+w²*q=0. Это также однородное ЛДУ 2-го порядка с постоянными коэффициентами. Его характеристическое уравнение имеет вид r²+w²=0, откуда r²=-w². А так как при любом значении w w²>0, то r²<0. Тогда r1=i*w, r2=-i*w, где i=√-1. Общее решение уравнения имеет вид q(t)=A*cos(w*t)+B*sin(w*t). Если теперь добавить начальное условие q(0)=0, то получится уравнение 0=A*1, откуда A=0. Тогда q(t)=B*sin(w*t). Обозначая B=q, получим искомое равенство q(t)=q*sin(w*t).
A(-5;14), B(2;7)
уравнение прямой АВ:
(x-(-5)):(2-(-5))=(y-14):(7-14)
(x+5):7=(y-14):(-7)
y-14=-(x+5),
y=-x+9