2,5 (часа) пароход по течению реки.
1,5 (часа) пароход против течения реки.
Объяснение:
Пароход по течению реки и против течения путь 68 км за 4 часа. Сколько времени он двигался против течения и по течению реки (отдельно), если по течению он двигался со скоростью 20 км / ч, а против течения - 12 км / ч?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние по течению
у - расстояние против течения
х/20 - время по течению
у/12 - время против течения
По условию задачи составляем систему уравнений:
х+у=68
х/20 + у/12 =4
Преобразуем второе уравнение, умножим его на 240, чтобы избавиться от дроби:
12х+20у=960/4 для упрощения:
3х+5у=240
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=68-у
3(68-у)+5у=240
204-3у+5у=240
2у=240-204
2у=36
у=18 (км) - расстояние против течения.
х=68-у
х=68-18
х=50 (км) - расстояние по течению.
Скорость по течению и против течения известны, можем вычислить время:
50/20=2,5 (часа) пароход по течению реки.
18/12=1,5 (часа) пароход против течения реки.
ответ:
данный калькулятор предназначен для построения графиков функций онлайн.
графики функций – это множество всех точек, представляющих вид функции; при этом x – любая точка из области определения функции, а все y - точки, равные соответствующим значениям функции. другими словами, график функции y=f(x) является множеством всех точек, абсциссы и ординаты которых соответствуют уравнению y=f(x).
изобразить график функции абсолютно точно в большинстве случаев невозможно, так как точек бесконечно много, трудно найти все точки графика функции. в таких случаях можно построить приблизительный график функции. чем больше точек берется в расчет, тем график более точный.
f`(x)=10x-12=3
10x=3+12
10x=15
x=1,5
y=5*9/4-12*3/2=11,25-18
y=-6,75
(1,5;-6,75)