Функция y=log2(x) строго возрастающая, поэтому каждое значение она принимает только 1 раз. ОДЗ: { 2x - 1 > 0 { x - 2a > 0 Получаем { x > 1/2 { x > 2a Если 2a > 1/2, то есть a > 1/4, тогда x > 2a Если 2a < 1/2, то есть a < 1/4, тогда x > 1/2 Решение. Переходим от логарифмов к числам под ними. 2x - 1 = x - 2a x = 1 - 2a Если a > 1/4, то x > 2a 1 - 2a > 2a 4a < 1 a < 1/4 - противоречие, здесь решений нет. Если a < 1/4, то x > 1/2 1 - 2a > 1/2 2a < 1/2 a < 1/4 - все правильно. Если a = 1/4, то получается log2 (2x - 1) = log2 (x - 1/2) log2 (2*(x - 1/2)) = log2 (x - 1/2) 2*(x - 1/2) = x - 1/2 x = 1/2 - не может быть по определению логарифма. Значит, при a = 1/4 тоже решений нет. ответ: Если a >= 1/4, то решений нет. Если a < 1/4, то x = 1 - 2a
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)