Графики y=logx+log(2x) и y=log(2x^2) разные, однако если решить первое уравнение то оно будет ровняться второму. почему тогда два графика выглядят по-разному?
Все потому что , ОДЗ учитывается для каждого слагаемого , а для второго для одного откуда область определения разные То есть графики обеих функций симметричны ,только области определения у них разные
Тогда так: Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее - Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
Тогда так: Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее - Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
откуда область определения разные
То есть графики обеих функций симметричны ,только области определения у них разные