1) Неверно, Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на КОСИНУС угла между ними. Это теорема косинусов.
2) Верно, по теореме Пифагора. 5^2 + 12^2 = 25 + 144 = 169 = 13^2
3) Да, треугольник со сторонами 5, 6, 7 остроугольный, по теореме косинусов.
5^2 + 6^2 = 25 + 36 = 61 > 7^2 = 49
Если сумма квадратов двух меньших сторон больше, чем квадрат наибольшей стороны, то треугольник остроугольный.
Если сумма равна квадрату наибольшей стороны, то прямоугольный.
Если же сумма меньше, чем квадрат наибольшей стороны, то тупоугольный.
4) Да, это верно, это теорема Пифагора.
f(x) = -2x² - x + 5 - квадратичная функция, график - парабола с ветвями, направленными вниз.
I x₀ = -b / (2a) = 1/(-2) = -0,5; y₀ = 5; B(-0,5; 5,25) - вершина параболы
Ось симметрии - прямая x = x₀, то есть в нашем x = -0,5;
Пункт 4) задания мы решили!
II В качестве точек для построения берем:
III Строим график (см. рисунок)
1) При x = -0,3; y ≈ 4,5; при x = 1,2; y ≈ 0,9; при x = 3; y = -16 (здесь проще подставить в функцию...)
2) y = 5 при x = 0 и при x = -0,5; y = 2 при x = 1 и при x = -1,5; y = -1 при x = -2 и при x = 1,5;
3) Нули функции (точки пересечения графика с осью OX)
При x₁ ≈ -1,9 или x₂ ≈ 1,4; y = 0;
Промежутки знакопостоянства:
При x ∈ (-∞; x₁) ∪ (x₂; +∞), f(x) < 0 (x ∈ (-∞; -1,9) ∪ (1,4; +∞))
При x ∈ (x₁; x₂), f(x) > 0 (x ∈ (-1,9; 1,4))
3 2/5=3,4
43/30=1,43333333333=1,4(3)