пусть событие f - произошло одно попадение в цель.
обозначим соссособытия:
а1- оба охотника не попали в цель
а2- оба охотника попали в цель
а3- 1й охотник попал в цель, 2й нет
а4- 2й охотник попал в цель, 1й нет
в нашем случае надо будет найти как раз вероятность а4.
найдем вероятности гипотез и условные вероятности события f для этих гипотез:
p(а1)= 0,8*0,4=0,32 р_a1 (f) = 0
р(а2)=0,2*0,6=0,12 р_a2 (f) = 0
р(а3)=0,2*0,4=0,08 р_a3 (f) = 1
р(а4)=0,6*0,8=0,48 р_a4 (f) = 1
можно по формуле байеса:
р_f (а4) = (0,48*1) / (0,32*0 + 0,12*0 + 0,08*1 + 0,48*1) = ~ 0.857
1) 0 и 1
2)- 1,5
3)-6, одна целая пять двенадцатых
4)-2 и одна целая одна шестая
5)-четыре целых одна треть
6) - 9 и - 2
Объяснение:
х2 – х в квадрате?
1)у = х2 - x
х2 - x=0
х(х-1)=0
х=0 х-1=0
х=1
2)у = х2 + 3
х2 + 3=0
х2=-3
х=-3/2= - 1,5
3)y = 12х2 - 17х +6
12х2 - 17х +6=0
х(12х-17)=-6
х=-6 12х-17=0
12х=17
х=17/12= одна целая пять двенадцатых
4)у = -6х2 + 7x - 2
-6х2 + 7x - 2=0
-х(6х-7)=2
-х=2 6х-7=0
х=-2 6х=7
х=7/6=одна целая одна шестая
5)y = 3x? - 5х + 8 (как я полагаю, тут вместо знака вопроса двойка?!)
3x2- 5х + 8=0
х(3х-5)=-8
х=-8 3х-5=8
3х=13
х=13/3=четыре целых одна треть
6)y = 2х2 - 7х + 9
2х2 - 7х + 9=0
х(2х-7)=-9
х=-9 2х-7=-9
2х=-9+7
2х=-2
х²-у²=4
у-х=4
Из второго уравнения системы найдём значение (у) и подставим его значение в первое уравнение:
у=4+х
х² -(4+х)²=4
х² -16 -8х -х²=4
-8х=4+16
-8х=20
х=20 :-8=-2,5
Найденное значение (х) подставим во второе уравнение:
у-(-2,5)=4
у+2,5=4
у=4-2,5
у=1,5
ответ: х=-2,5; у=1,5