Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
Пусть вторая бригада изготовила х деталей, то первая х-10, а третья бригда 30% от (х-10+х), значит третья (2х-10)*30% = (2х-10)*0,3.
Вместе 3 бригады изготовили х-10 +х +0,3(2х-10) =65.
х-10 +х +0,6х -3 = 65
2,6х= 78
х=78 / 2,6
х= 30 (дет) - вторая бригада
30-10 =20(дет) - первая 65 -30-20 = 15(дет) - третья.
ответ: 20, 30, 15.