сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .
в случае квадратного уравнения формулы виета имеют вид:
значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.
. используя теорему виета, найти корни уравнения
решение. согласно теореме виета, имеем, что
подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения
и
ответ. корни уравнения ,
обратная теорема виета
если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.
. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.
решение. пусть искомое квадратное уравнение имеет вид:
тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:
тогда
то есть искомое уравнение
ответ.
общая формулировка теоремы виета
если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:
иначе говоря, произведение равно сумме всех возможных произведений из корней.
Пусть рабочий изготовлена Х деталей в день. Тогда он их должен был изготовить за 360/Х дней.
Реально он делал х+20 деталей в день и по условию это заняло на 1,5 дня меньше
\begin{gathered}\frac{360}{x} - \frac{360}{x+20} =1,5 \\ \frac{360(x+20)-360x}{x(x+20)} =1,5 \\ \frac{360x+ 7200 - 360x}{x(x+20)} =1,5 \\ 7200=1,5x (x+20) \\ x^{2} +20x-4800=0 \\\end{gathered}
x
360
−
x+20
360
=1,5
x(x+20)
360(x+20)−360x
=1,5
x(x+20)
360x+7200−360x
=1,5
7200=1,5x(x+20)
x
2
+20x−4800=0
По теореме Винта
х1=-80
Х2=60
ответ: 60.
98*3 = 294