Объяснение:
1 √54 < x < √124
54< x²< 124
смотрим какие квадраты в промежутке
64, 81, 100, 121
8, 9, 10, 11
2 √125-√64 = 5√5-8
3 √(18-2х) при х=-9 ⇒ √36 = 6
4 Z - множество целых чисел, -127 целое, верно
5 Z - множество целых чисел, 346,3 не целое, неверно
6 Q - рациональные π иррациональное число. неверно
7 √23-√22 >0 т. к. 23>22
т. е. допустим что √23-√22 >0 ⇒ √23> √22 возведем обе части в квадрат 23 >22 да! √23-√22 >0
8 пусть – √34 < - √33 ⇒ умножим обе части на -1 ⇒ √34 >√33 - в квадрат ⇒ 34 >33 да – √34 < - √33
9 √124 < x < √245
124 <x²< 245
x² 144 169 196 225
x = 12, 13, 14, 15
Решать такое надо графически.
Построим графики уравнений f(x,y)=0 (к 1-му неравенству); g(x,y)=0 (ко 2-му неравенству)
В 1-м неравенстве видно, что это эллипс.
Приведу его к каноническому виду:
Это значит, что центр эллипса в точке (2;-3), по x он растянется максимум на 4 единицы, по у на 2.
Во 2-м видно, что будут 2 прямые.
Построили графики на одной системе координат.
1-е неравенство говорит нам, что это геометрическое место точек, которые находятся ВНУТРИ эллипса, причем не захватывая его контур.
Теперь ко 2-му неравенству.
Прямые пересекаются (у них разные угловые коэффициенты) и образуют перекрестие, деля плоскость на 4 части. Нам будут нужны 2 части, это верхняя часть и нижняя, можно это проверить, подставив точку (0;0) во 2-е неравенство и (0;-5).
Получаются два сектора, причем прямые в них включатся в зону, так как 2-е неравенство системы нестрогое, а вот контуры эллипса как бы выколоты. Штриховкой я отметил нужную область.