Строгие неравенства
{\displaystyle a<b}a<b — означает, что {\displaystyle a}a меньше, чем {\displaystyle b.}b.
{\displaystyle a>b}a>b — означает, что {\displaystyle a}a больше, чем {\displaystyle b.}b.
Неравенства {\displaystyle a>b}a>b и {\displaystyle b<a}b < a равносильны. Говорят, что знаки {\displaystyle >}> и {\displaystyle <}< противоположны; например, выражение «знак неравенства сменился на противоположный» означает, что {\displaystyle <}< заменено на {\displaystyle >}> или наоборот.
Нестрогие неравенства
{\displaystyle a\leqslant b}a\leqslant b — означает, что {\displaystyle a}a меньше либо равно {\displaystyle b.}b.
{\displaystyle a\geqslant b}a\geqslant b — означает, что {\displaystyle a}a больше либо равно {\displaystyle b.}b.
Русскоязычная традиция начертания знаков ⩽ и ⩾ соответствует международному стандарту ISO 80000-2. За рубежом иногда используются знаки ≤ и ≥ либо ≦ и ≧. Про знаки ⩽ и ⩾ также говорят, что они противоположны.
Както так
x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
3ч15мин=3.25 ч
а) 600-140*3.25=145
б) 300-455=-155 если отрицательно, значит они друг друга обогнали=)