Пусть скорость течения реки (х) км/час собственная скорость лодки (у) км/час ---это и скорость в стоячей воде))) тогда скорость ПО течению будет (у+х) км/час скорость ПРОТИВ течения будет (у-х) км/час t = S / v время = путь / скорость на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов))) (54 / (у+х)) + (48/у) = 6 (64/у) - (36/(у+х)) = 2 система 48х + 102у = 6*у*(х+у) 64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у) 32х + 14у = у*(х+у)
8х + 17у = 32х + 14у 24х = 3у у = 8х
8х + 17*8х = 8х*(х+8х) 18х = 9х² 2х = х² х² - 2х = 0 х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла))) х = 2 (км/час) ---скорость течения реки у = 8х = 16 (км/час) собственная скорость лодки ПРОВЕРКА: (54 / 18) + (48 / 16) = 3+3 = 8 часов))) 64 / 16 = 4 часа в стоячей воде двигалась лодка 36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
Пусть v ( можно х ) - скорость первой машины, тогда скорость 2 машины ( v+20). Путь они одиннаковый 180км, выразим время движения 1 и 2 машины. t1=180 / x, t2=180 / ( x+20) . Зная, что первая пришла позже на 45 мин=0,75ч, составим уравнение: 180 / x - 180 / ( x+20)=0,75, решим уравнение относительно х. 180х+3600 - 180х =0,75х^2 +15x, получили квадратное уравнение 0,75х^2 +15x -3600=0, решаем, получаем 2 корня х1=60, х2= -80 ( скорость отрицательной не бывает ) значит скорость 1 автомобиля v=60км/ч, скорость второго 60+20=80км/ч . ответ: 1 машина 60км/ч, 2 машина 80км /ч.
б) (( x-3)(x+4))/(x+4)^2= (x-3)/(x+4)