2) x=0; x=-1,4;
4) m=0; m=0,75
6) u=0; u=2
Объяснение:
Общая идея, - вынесение множителя за скобки. Так и поступим:
2) 5x·x+7·x=0
Выносим общий множитель x: x·(5·x+7)=0
Результат умножения равен нулю, когда какой-либо из множителей равен нулю, следовательно:
x(1)=0 - первый корень;
5·x+7=0 тогда 5·x=-7 значит x=-7:5=-1,4
4) 4m·m-3·m=0
Выносим общий множитель m: m·(4·m-3)=0
Результат умножения равен нулю, когда какой-либо из множителей равен нулю, следовательно:
m(1)=0 - первый корень;
4·m-3=0 тогда 4·m=3 значит m=3:4=0,75
6) 3u·u+7=6·u+7
Наши "весы" в равновесии, снимем одинаковые "грузики", сохраняя равновесие весов:
3u·u+7=6·u+7 тогда 3u·u+7-7=6·u+7-7 значит 3u·u=6·u
Точно также мы имеем право ещё упростить выражение 3u·u=6·u, разделив обе части уравнения на 3:
3u·u=6·u
u·u=2·u
Отсюда видно, что u может принимать два значения: u(1)=0 и u(2)=2
корни многочлена
x₁=3;
x₂=-4;
x₃=0,5+(i√15)/2;
x₄=0,5-(i√15)/2.
Объяснение:
запишем все целые делители числа 60:
60(±1; ±2; ±3; ±4; ±5; ±6; ±10; ±15; ±20; ±30; ±60).
учтем, что x≠1; x≠2; x≠-2; x≠-3, и далее
методом подбора легко определить два корня уравнения:
x=3;
x=-4;
Но уравнение у нас имеет высшую степень 4, поэтому и корней оно имеет ровно 4. Попытаемся найти еще два недостающих корня. Приведем многочлен к стандартному виду:
(x²-4)(x²+2x-3)=60;
x⁴+2x³-3x²-4x²-8x+12-60=0;
x⁴+2x³-7x²-8x-48=0.
С учетом найденных двух корней:
(x-3)(x+4)=x²+x-12;
Разделим многочлен на известный множитель:
x⁴+2x³-7x²-8x-48 l x²+x-12
x⁴+x³-12x² l x²+x+4
x³+5x²-8x
x³+ x²-12x
4x²+4x-48
4x²+4x-48
0
Теперь наш многочлен имеет вид:
(x-3)(x+4)(x²+x+4)=0;
Попробуем найти недостающие два корня уравнения (разложить на мноители квадратный трехчлен x²+x+4)
x²+x+4=0; D=1-16<0;
два оставшихся корня - комплексные, т.к. √D=i√15;
x₁₂=0,5(-1±i√15);
x₁=0,5+(i√15)/2; x₂=0,5-(i√15)/2;
Многочлен разлогается на множетели следующим образом:
(x-3)(x+4)(x+0,5-(i√15)/2)(x-0,5+(i√15)/2)=0
10-4х-4у=3у-3х
2х-3х-2у+4у= -1
-4х+3х-4у-3у= -10
-х+2у= -1 |*(-1)
-х-7у= -10
х-2у=1
-х-7у= -10
(решаем методом сложения)
х-х-2у-7у=1-10
-9у= -9
у=1
х=1-2*1= -1
ответ: (-1;1)