Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Решение. Пусть х - скорость велосипедиста. Т.к. до первой встречи велосипедист ехал 30+10=40 мин, а мотоциклист 10 мин, то скорость мотоциклиста будет в четыре раза больше, т.е. 4х. Дальше выражаем минуты в часах. 0,5х - это расстояние, которое проехал велосипедист после первой встречи до второй встречи за полчаса. 30+0,5х - проехал мотоциклист после первой встречи до второй встречи. Это же расстояние равно 4х*0,5 км. Уравнение: 30 + 0,5x = 4x*0,5 30+0,5x=2x 1,5x=30 x = 20 км/ч - скорость велосипедиста 4·20 = 80 км/ч - скорость мотоциклиста. ответ: 20 и 80.