Поскольку функция содержит квадрат переменной х, то она квадратная. Следовательно, ее графиком будет парабола.
О параболе известно, что у нее есть вершина, что ветви ее могут быть направлены вверх или вниз, и что она может быть симметрична оси Оу.
Начнем с симметричности относительно оси Оу.
Если функция симметрична, то она называется четной. Свойство четности можно проверить, подставив вместо переменной х противоположное ей значение, то есть —х. Если в результате получим уравнение функции без изменений, то функция является четной, а значит симметричной относительно оси Оу.
Итак, проверим функцию на четность:
 — функция четная.
Далее определим куда направлены ветви параболы. Для этого достаточно посмотреть на знак перед квадратом переменной х. в нашем случае перед ним стоит условно знак «плюс», а это значит, что ветви параболы будут направлены вверх.
Для определения координаты точки вершины параболы будем использовать готовую формулу, которая дает возможность найти значение первой координаты точки вершины параболы:

Чтобы получить значение второй координаты вершины подставим найденное значение х в уравнение функции:

Таким образом, вершиной параболы является точка (0; —4).
Теперь нужно вычислить еще какое-то количество точек, которые будут принадлежать параболе, для ее построения.
Возьмем четыре произвольных значения переменной х и посчитаем для них значение функции у:
х = 1:  —точка (1; —3).
х = 2:  —точка (2; 0).
х = —1:  —точка (—1; —3).
х = —2:  —точка (—2; 0).
Проведем через вершину и полученные точки кривую и получим график функции y = x^2 — 4.

как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.