Существует два перевода из периодической дроби в обыкновенную:1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, скока цифр между запятой и первым периодом: 0,11(6) 116-11 105 7 0,11(6)=== 900 900 60 235-2 2330.2(35)= = 990 990 2) а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k. б)Найдем значение выражения X · 10k в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь. г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.0,11(6)=Хk=110^(k)=1тогда x*10=10*0,116666...=1,166666...10X-X=1,166666...-0,116666...=1,16-0,11=1,059X=1,05 105 7X== 900 600.2(35):k=210^k=100100X=0.2353535...*100=23,535353100X-X=23,535353-0.2353535=23,399x=23,3 233x= 900
Перемножая члены по правилу пропорций и приводя подобные члены, приходим к уравнению x⁴-13*x³+22*x²+117*x+81=0. Это уравнение является приведённым (коэффициент при x⁴ равен 1), поэтому его корни могут быть среди целых делителей его свободного члена. Таковыми являются числа 1,-1,3,-3,9,-9,27,-27,81,-81. Подставляя число -1 в уравнение, убеждаемся, что оно является его корнем. Разделив многочлен x⁴-13*x³+22*x²+117*x+81 на одночлен x+1, получаем равенство x⁴-13*x³+22*x²+117*x+81=(x+1)*(x³-14*x²+36*x+81). Рассмотрим теперь уравнение x³-14*x²+36*x+81=0. Оно тоже является приведённым, поэтому его корни могут быть среди чисел 1,-1,3,-3,9,-9,27,-27,81,81. Подставляя в уравнение число 9, убеждаемся, что оно является одним из корней. Разделив многочлен x³-14*x²+36*x+81 на двучлен x-9, получим равенство x³-14*x²+36*x+81=(x-9)*( x²-5*x-9). Квадратное уравнение x²-5*x-9=0 имеет корни (5+√61)/2 и (5-√61)/2. Значит, корни данного уравнения таковы: x1=-1, x2=9, x3=(5+√61)/2, x4=(5-√61)/2.
столько нулей, скока цифр между запятой и первым периодом: 0,11(6) 116-11 105 7 0,11(6)=== 900 900 60 235-2 2330.2(35)= = 990 990 2) а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k. б)Найдем значение выражения X · 10k в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь. г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.0,11(6)=Хk=110^(k)=1тогда x*10=10*0,116666...=1,166666...10X-X=1,166666...-0,116666...=1,16-0,11=1,059X=1,05 105 7X== 900 600.2(35):k=210^k=100100X=0.2353535...*100=23,535353100X-X=23,535353-0.2353535=23,399x=23,3 233x= 900