М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ариша037
ариша037
28.12.2022 18:13 •  Алгебра

Одной из газет автор заметки писал о скидках, к которым прибегают к магазинам перед большими праздниками . продавцы заранее увеличивают цены на 20%, а потом делают большую праздничную скидку на 30%. по мнению автора скидка фактически оставляет лишь 10%. а сколько она составляет на самом деле? распишите всё с подробностями.

👇
Ответ:
20H
20H
28.12.2022
Если цена была х руб и ее подняли на 20%, то она стала 1,2х руб.
Если потом цену опустили на 30%, то она стала 0,7*1,2x = 0,84x руб.
Фактически скидка составила 16%.
4,6(42 оценок)
Ответ:
shakirovbulat9
shakirovbulat9
28.12.2022
Если старая цена была равна х, то новая цена станет равна 1,2 * 0,7 * х = 0,84х. Реальная скидка составит (х - 0,84х) / х * 100 = 16%.
4,6(62 оценок)
Открыть все ответы
Ответ:
a)  tgx >1
 πn +π/4 < x < π/2 + πn  , n ∈ Z.

x ∈ об единение  интервалов ( πn +π/4 ; π/2 +πn );

π/4 < x < π/2  ; 
2πk+π/4 < x < π/2 +  2πk ;
2k*π+ π/4 < x <  π/2 + 2k*π  (1)  
2k _четное число .

π+ π/4  < x <3π/2 ;
π+  π/4  < x < π/2  + π ;
2πk+π+  π/4  < x < π/2  + π +2πk ;
(2k+1)π + π/4  < x < π/2 + (2k+1)π   (2)
(2k+1)__нечетное число .

 πn +π/4 < x < π/2 + πn  , n ∈ Z.

б)  сos x≤0 .
2πk +  π/2 ≤ x ≤ 3π/2  +2πk , k∈ Z.
в)     ctgx <1.
πk+ π/4 < x < π +πk
 г)   sinx ≥0 .
πk  ≤  x ≤  (2k +1)π ; k∈ Z

2πk+0  ≤  x ≤ π + 2πk ; k∈ Z.
2πk  ≤  x ≤  π + 2πk ; k∈ Z.
2πk  ≤  x ≤  (2k +1)π ; k∈ Z
4,5(66 оценок)
Ответ:
sonua3
sonua3
28.12.2022
a)  tgx >1
 πn +π/4 < x < π/2 + πn  , n ∈ Z.

x ∈ об единение  интервалов ( πn +π/4 ; π/2 +πn );

π/4 < x < π/2  ; 
2πk+π/4 < x < π/2 +  2πk ;
2k*π+ π/4 < x <  π/2 + 2k*π  (1)  
2k _четное число .

π+ π/4  < x <3π/2 ;
π+  π/4  < x < π/2  + π ;
2πk+π+  π/4  < x < π/2  + π +2πk ;
(2k+1)π + π/4  < x < π/2 + (2k+1)π   (2)
(2k+1)__нечетное число .

 πn +π/4 < x < π/2 + πn  , n ∈ Z.

б)  сos x≤0 .
2πk +  π/2 ≤ x ≤ 3π/2  +2πk , k∈ Z.
в)     ctgx <1.
πk+ π/4 < x < π +πk
 г)   sinx ≥0 .
πk  ≤  x ≤  (2k +1)π ; k∈ Z

2πk+0  ≤  x ≤ π + 2πk ; k∈ Z.
2πk  ≤  x ≤  π + 2πk ; k∈ Z.
2πk  ≤  x ≤  (2k +1)π ; k∈ Z
4,4(41 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ